The Bergman Kernel on Toric Kähler Manifolds
نویسندگان
چکیده
Let (L, h) → (X,ω) be a compact toric polarized Kähler manifold of complex dimension n. For each k ∈ N, the fibre-wise Hermitian metric h on L induces a natural inner product on the vector space C∞(X,Lk) of smooth global sections of L by integration with respect to the volume form ω n n! . The orthogonal projection Pk : C∞(X,Lk) → H(X,L) onto the space H(X,L) of global holomorphic sections of L is represented by an integral kernel Bk which is called the Bergman kernel (with parameter k ∈ N). The restriction ρk : X → R of the norm of Bk to the diagonal in X ×X is called the density function of Bk. On a dense subset of X, we describe a method for computing the coefficients of the asymptotic expansion of ρk as k →∞ in this toric setting. We also provide a direct proof of a result which illuminates the off-diagonal decay behaviour of toric Bergman kernels. We fix a parameter l ∈ N and consider the projection Pl,k from C∞(X,Lk) onto those global holomorphic sections of L that vanish to order at least lk along some toric submanifold of X. There exists an associated toric partial Bergman kernel Bl,k giving rise to a toric partial density function ρl,k : X → R. For such toric partial density functions, we determine new asymptotic expansions over certain subsets of X as k → ∞. Euler-Maclaurin sums and Laplace’s method are utilized as important tools for this. We discuss the case of a polarization of CP in detail and also investigate the non-compact Bargmann-Fock model with imposed vanishing at the origin. We then discuss the relationship between the slope inequality and the asymptotics of Bergman kernels with vanishing and study how a version of Song and Zelditch’s toric localization of sums result generalizes to arbitrary polarized Kähler manifolds. Finally, we construct families of induced metrics on blow-ups of polarized Kähler manifolds. We relate those metrics to partial density functions and study their properties for a specific blow-up of C and CP in more detail.
منابع مشابه
Szasz Analytic Functions and Noncompact Kähler Toric Manifolds
We show that the classical Szasz analytic function SN (f)(x) is related to the Bergman kernel for the Bargmann-Fock space. Then we generalize this relation to any noncompact toric Kähler manifold, defining the generalized Szasz analytic function ShN (f)(x). Then we will prove the complete asymptotic expansion of ShN (f)(x) and its scaling limit property. As examples, we will compute the general...
متن کاملMultiplier ideal sheaves and the Kähler-Ricci flow on toric Fano manifolds with large symmetry
The purpose of this paper is to calculate the support of the multiplier ideal sheaves derived from the Kähler-Ricci flow on certain toric Fano manifolds with large symmetry. The early idea of this paper has already been in Appendix of [11].
متن کاملNon-Kähler symplectic manifolds with toric symmetries
Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...
متن کاملBergman Metrics and Geodesics in the Space of Kähler Metrics on Toric Varieties
Geodesics on the infinite dimensional symmetric space H of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X are solutions of a homogeneous complex Monge-Ampère equation in X×A, where A ⊂ C is an annulus. They are analogues of 1PS (one-parameter subgroups) on symmetric spaces GC/G. Donaldson, Arezzo-Tian and Phong-Sturm raised the question whether Monge-Ampère geodesics c...
متن کاملKähler Geometry of Toric Manifolds in Symplectic Coordinates
A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011